Scientific Program

Aims and Scope

Submissions are invited in all areas of biomedical image registration. Topics of interest include, but are not limited to:
 

Novel registration methodology: Learning-based methods, combinations of learning and non-learning techniques and conventional approaches. 2D/3D/4D, spatiotemporal/dynamic, pairwise / groupwise, slice-to-volume, projective, single/multi-modal, intra/inter-subject, model-based, patch-based, multi-channel, tracking. 

Machine learning and deep learning techniques for registration: unsupervised / supervised / reinforcement learning, convolutional / recurrent / transformer networks, cost correlation, neural networks for feature extraction and matching, correspondence weighting and prediction, attention modeling, deformation learning, deep encoder-decoder networks

Optimisation and mathematical aspects of image registration: continuous/discrete optimization, real-time, similarity measures, diffeomorphisms, LDDMM, stationary velocity, inverse consistency, multi-scale, graphical models

Biomedical applications of registration: computer-assisted interventions, image-guided therapy, treatment planning/delivery, diagnosis/prognosis, atlas-based segmentation, label fusion, histopathology correlation, serial studies, pathology detection and localization, morphometry, biomechanics, image retrieval/restoration/fusion, imaging biomarkers for precision medicine, radiomics & radiogenomics, early proofs of concept

Validation of registration: quantitative and qualitative methods, benchmarking, comparison studies, phantom studies, correlation to outcome, validation protocols and performance metrics, uncertainty estimation

Motion modelling, simulations and motion reconstruction

Springer LNCS Proceedings (available for free to all participants from now up unil to 4 weeks after conference)
 


Workshop on Biomedical Image Registration 2022

Sunday 10th July (Klinikum rechts d. Isar) Monday 11th July (TUM Campus Garching) Tuesday 12th July (TUM Campus Garching) 
  10:00 - 10:15Opening Prof. Dr. Julia Schnabel09:15 - 10:00Keynote Dr. Wolfgang Wein
  10:15 - 11:00S1 Short Orals Chairs: Dr. Veronika Zimmer (TUM) / Dr. Matthew Toews (ÉTS)10:00 - 10:30S3 Short Orals Chairs: Prof. Žiga Špiclin
(Ljubljana) / Tony Mok (CUHK)
  11:00 - 11:15break10:30 - 10:45break
  11:15 - 12:15L1 Orals: Topology / Atlases Chairs: Dr. Veronika Zimmer (TUM) / Dr. Stefan Heldmann (MEVIS)10:45 - 11:45L4 Orals: Optimisation Chairs: Prof. Žiga Špiclin
(Ljubljana) / Tony Mok (CUHK)
  12:15 - 13:00Keynote Prof. Dr. Josien Pluim11:45 - 12:30Keynote Prof. Dr. Maria Vakalopoulou
  13:00 - 14:00break12:30 - 13:15break
14:00 - 15:30Tutorial: Medical Image Registration Dr. Veronika Zimmer14:00 - 14:30S2 Short Orals Chairs: Prof. Stefan Klein (Erasmus), Prof. Xiahai Zhang (Fudan)13:15 - 14:15L5 Orals: Metrics / Losses Chairs: Alessa Hering (Radboud) / Prof. Adrian Dalca (Harvard/MIT)
 14:30 - 15:30L2 Orals: Uncertainty Chairs: Prof. Stefan Klein (Erasmus), Prof. Pew-Thian Yap (UNC)14:15 - 14:30Awards Prof. Dr. Daniel Rueckert
15:30 - 16:00break15:30 - 15:45break14:30 - 15:15Poster
16:00 - 18:00Learn2Reg Challenge Prof. Mattias Heinrich15:45 - 16:45L3 Orals: Architectures Chairs: Dr. Raphael Prevost (ImFusion), Prof. Kilian Pohl (Stanford)
 16:45 - 17:45Poster
 
  19:00 -Conference Dinner: Paulaner Nockherberg

 

 

L1 Orals: Atlases / TopologyJulia Andresen: Unsupervised Non-Correspondence Detection in Medical Images Using an Image Registration Convolutional Neural Network, [Poster], [Video].
Mon 11:15-12:15Anton François: Weighted Metamorphosis for registration of images with different topology, [Poster], [Video].
Ubaldo Ramon Julvez: LDDMM meets GANs: Generative Adversarial Networks for diffeomorphic registration, [Poster], [Video].
Wietske Bastiaansen: Towards a 4D Spatio-Temporal Atlas of the Embryonic and Fetal Brain using a Deep Learning approach for Groupwise Image Registration, [Poster], [Video].

 

L2 Orals: UncertaintyChristian Weihsbach: DeepSTAPLE: Learning to predict multimodal registration quality for unsupervised domain adaptation, [Poster], [Video].
Mon 14:30-15:30Alphin J Thottupattu: A method for image registration via broken geodesics, [Poster], [Video].
Andreas Smolders: Deformable Image Registration uncertainty quantification using deep learning for dose accumulation in adaptive proton therapy, [Poster], [Video].
Frithjof Kruggel: Distinct structural patterns of the human brain: A caveat for registration, [Poster], [Video].

 

L3 Orals: ArchitecturesSamuel Joutard: A multi-organ point cloud registration algorithm for abdominal CT registration, [Poster], [Video].
Mon 15:45-16:45Mattias P Heinrich: Voxelmorph++ Going beyond the cranial vault with keypoint supervision and multi-channel instance optimisation, [Poster], [Video].
Junyu Chen: Unsupervised Learning of Diffeomorphic Image Registration via TransMorphn, [Poster], [Video].
Sean I. Young, Yaël Balbastre: SuperWarp: Supervised Learning and Warping on U-Net for Invariant Subvoxel-Precise Registration, [Poster], [Video].

 

L4 Orals: OptimisationHanna Siebert: Learn to fuse input features for large-deformation registration with differentiable convex-discrete optimisation, [Poster], [Video].
Tue 11:00-12:00Oezdemir Cetin: Multi-magnification networks for deformable image registration on histopathology images, [Poster], [Video].
Till Nicke: Real-time optical flow estimation on vein and artery ultrasound sequences based on knowledge-distillation, [Poster], [Video].
Fenja Falta: Learning iterative optimisation for deformable image registration with recurrent convolutional networks, [Poster], [Video].

 

L5 Orals: Metrics / LossesIvor J A Simpson: Motion Correction in low SNR MRI using an approximate Rician log-likelihood, [Poster], [Video].
Tue 13:00-14:00Johan Öfverstedt: Cross-Sim-NGF: FFT-Based Global Rigid Multimodal Alignment of Image Volumes using Normalized Gradient Fields, [Poster], [Video].
Justinas Antanavicius, Raghavendra Selvan: Identifying Partial Mouse Brain Microscopy Images from the Allen Reference Atlas using a Contrastively Learned Semantic Space, [Poster], [Video].
Xinrui Song: Transformed Grid Distance Loss for Supervised Image Registration, [Poster], [Video].

 

S1 Short OralsJing Zou: Deformable Lung CT Registration by Decomposing the Large Deformation, [Poster], [Video].
Mon 10:15-11:00Alexander Bigalke: A novel Mean Teacher framework for domain adaptive lung registration, [Poster], [Video].
Lihao Liu: You Only Look at Patches: A Patch-wise Framework for 3D Unsupervised Medical Image Registration, [Poster], [Video].
Zicong Zhou: Recent Developments of an Optimal Control approach to Nonrigid Image Registration, [Poster], [Video].

 

S2 Short OralsBatool Abbas: 2D/3D Intermodel Registration of Quantitative Magnetic Resonance Images, [Poster], [Video].
Mon 14:00-14:30Andjela Dimitrijevic: Deep Learning-based Longitudinal Intra-subject Registration of Pediatric Brain MR Images, [Poster], [Video]
Neha Goyal: Real-time Alignment for Connectomics, [Poster], [Video].

 

S3 Short OralsPhilippe Weitz, Leslie Solorzano: ACROBAT - Automatic Registration of Breast Cancer Tissue, [Poster], [Video].
Tue 10:00-10:45Mona Schumacher: Weak Bounding Box Supervision for Image Registration Networks, [Poster], [Video].
Annkristin Lange: A deformable image-based registration approach to obtain shape correspondence for statistical shape modeling of finger bones, [Poster], [Video].

 

List of Accepted Long Papers

Title

Authors

Affiliation (first author)

LDDMM meets GANs: Generative Adversarial Networks for diffeomorphic registration

Ubaldo Ramon Julvez|Monica Hernandez|Elvira Mayordomo

Universidad de Zaragoza

Cross domain knowledge compression in realtime optical flow prediction on ultrasound sequences

Till Nicke|Laura Graf|Mikko Lauri|Sven Mischkewitz|Simone Frintrop|Mattias P Heinrich

Fraunhofer MEVIS Lübeck

Cross-Sim-NGF: FFT-Based Global Rigid Multimodal Alignment of Image Volumes using Normalized Gradient Fields

Johan Öfverstedt|Joakim Lindblad|Natasa Sladoje

Uppsala University

Multi-magnification networks for deformable image registration on histopathology images

Oezdemir Cetin|Yiran Shu|Nadine Flinner|Paul Ziegler|Peter Wild|Heinz Koeppl

Technische Universität Darmstadt

Deformable Image Registration uncertainty quantification using deep learning for dose accumulation in adaptive proton therapy

Andreas Smolders|Antony lomax|Damien Charles Weber|Francesca Albertini

ETH Zurich

DeepSTAPLE: Learning to predict multimodal registration quality for unsupervised domain adaptation

Christian Weihsbach|Alexander Bigalke|Christian N. Kruse|Hellena Hempe|Mattias P Heinrich

Universität zu Lübeck

A multi-organ point cloud registration algorithm for abdominal CT registration

Samuel Joutard|Thomas Pheiffer|Chloe Audigier|Patrick Wohlfahrt|Reuben Dorent|Sebastien Piat|Markus Juergens|Tom Vercauteren|Marc Modat|Tommaso Mansi

King's College London

A method for image registration via broken geodesics

Alphin J Thottupattu|Jayanthi Sivaswamy|Venkateswaran P. Krishnan

International Institute of Information Technology Hyderabad

Voxelmorph++ Going beyond the cranial vault with keypoint supervision and multi-channel instance optimisation

Mattias P Heinrich|Lasse Hansen

Universität zu Lübeck

Motion Correction in low SNR MRI using an approximate Rician log-likelihood

Ivor J A Simpson|Balazs Orzsik|Iris Asllani|Mara Cercignani

University of Sussex

Weighted Metamorphosis for registration of images with different topology.

Anton François|Matthis Maillard|Catherine Oppenheim|Johan Pallud|Pietro Gori|Joan Alexis Glaunès

University Paris Descartes

Identifying Partial Mouse Brain Microscopy Images from the Allen Reference Atlas using a Contrastively Learned Semantic Space

Justinas Antanavicius|Roberto Leiras|Raghavendra Selvan

University of Copenhagen